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Chapter 1 

Overview

To understand quantum chaos in conformal field theories we must first understand 

some basics of conformal field theories and quantum gravity.

Chapter one gives an introduction of general relativity and black holes. We 

here learn the basic mathematics that is required to describe black holes, and also 

introduce Kruskal coordinate system and Kruskal and Penrose diagrams. Study of 

black holes is easier when we use Kruskal and Penrose diagrams.

Chapter two deals with black hole thermodynamics. These ideas were introduced 

by Stephen Hawking in the 70’s, where several important theorems were proved 

which link black holes and thermal systems. Some of the explicit calculations that 

are done are the temperature of a Schwarzschild black holes, and thermodynamic 

quantities of BTZ black hole.

Chapter three is a discussion on AdS/CFT, and how string theory and a theory 

of quantum gravity can be linked to quantum field theories in one lower dimension.
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Here we also discuss some properties of conformal field theory.

Chapter four is the main discussion. Starting of with the connection between 

entanglement and geometry, we discuss a method to calculate the entanglement en­

tropy between quantum system. We also discuss quantum chaos through a quantity 

called mutual information.
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Chapter 2

Black Holes

Black holes are regions in spacetime where the gravitational field is so strong that 

even light cannot escape. They were first predicted as solutions to Einstein’s field 

equations by Schwarzschild. Black holes are formed in nature when a star collapses 

and its radius becomes so small that its escape velocity exceeds the speed of light.

In Newtonian gravity the escape velocity of a star is given by

where G is Newton’s constant, m is the mass of the body and r is the radius of the 

body. So the star can form a black hole if

(2.1)

2Gm 
f  < — ;r~ (2.2)

The black hole has a horizon, and once anything falls into a black hole, it is trapped
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inside that region of spacetime forever.

This is a very naive description of a black hole. For a complete description of 

black holes we must go to the framework of General Relativity.

2.1 Special Relativity

General relativity was a theory of gravity developed by Albert Einstein in 1916. It 

describes gravity as a theory of spacetime itself! But first we discuss some concepts 

of special relativity.

In 4 dimensional flat spacetime (Minkowski space) the coordinate invariant dis­

tance is given by

ds2 =  —dt2 + dx2 +  dy2 +  dz2 (2.3)

we can define x° =  t, x 1 =  x, x2 =  y and x3 =  z

ds2 =  —dx°2 + dxl2 +  dx22 +  dx32 (2.4)

This equation can be rewritten as

ds2 =  rhl„dxfldxu (2.5)

Here the indices [i and u run from 0 to 4. And rj is the Minkowski metric.

Here s is the invariant distance of a point particle, so we can say that the action
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for a point particle must be proportional to the integral over s

S oc ds

To match the units we must multiply with the mass of the particle

S =  —m / ds

S =  — m I Wij^dx^dx1'

Let’s parametrize this action by the proper time r

S =  - m J  y j v ^ ^ r d r  (2.6)

to get equations of motion we set 5S =  0. Doing this we are left with

d2x^
dr2

=  0 (2.7)

So we can see that in special relativity a particle moves in a straight line. We will 

see that particles do not move in a straight line in curved spacetime.
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2.2 General Relativity

Einstein’s theory of gravity says that matter curves space. So we must write down 

a coordinate invariant distance in curved spacetime. This can be done by

ds2 = gfludxfJ'dxl/ (2.8)

where g^v is called the metric tensor. Since we are not in flat space the metric tensor 

is not a constant but could depend on

As in the case of Special Relativity we can write down the action for a particle 

in general relativity
f  / dx v dx1'

s  =  - m ]  V ^ d T r f T * '  ( 2 ' 9 )

Taking the variation of the action and setting it to zero we get

- ~̂2 +  29^ ^ a9^  + dl,9 â ~ d ĝa^~dr~dr =  ° 2̂'10^

defining Christoffel connection as

r L  =  +  dvfa  -  d^gav) (2.11)

we get
n dTa dx1'
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The above equation is known as geodesic equation and it describes the path a 

particle takes in a particular spacetime. So, once we have the metric tensor the path 

taken by a particle is completely defined.

Now we define the velocity vector as v  ̂ ^  and then rewrite equation (2.12)

as

—  + I* ,t /V  = 0 (2-13)

2.2.1 Einstein’s Field Equations

Equation (2.12) gives us the equation of motion once we have the metric tensor, 

but we have not yet discussed how to obtain the metric tensor. The metric tensor 

is the solution of Einstein’s Field Equations. These equations can be derived from 

varying the Einstein-Hilbert action and then setting the variation 5S =  0.

The Einstein-Hilbert action with a cosmological constant is given by

5 = ~  J [(R  -  2A) + £ M] ^ d 4x (2.14)

The field equations are

^9 [iv y (2.15)

where

• The constant k =  8nG is obtained by taking the Newtonian limit and com-
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paring the equation to Newton’s law of gravitation.

• is the Ricci tensor obtained contracting the first and third indices of the 

Riemann Tensor R„pa

R-L =  8Pr i  -  W l, + C C  -  r y t ,  (2.16)

and

R,u =  Raturu (2.17)

• R is the scalar curvature given by contracting the Ricci Tensor.

R =  g ^ R ^  (2.18)

• A is the cosmological constant which acts as constant energy density in space­

time and is also known as dark energy. The cosmological constant problem is 

one of the big unsolved problems in physics.

• Cm is the term in the Lagrangian density describing any matter fields appear­

ing in the theory.

• T is the energy-momentum tensor of matter fields given by sSiIE3£m1



2.2.2 Black Holes

Now that we have the machinery of general relativity we can start discussing black 

holes. Einstein’s field equations are highly non-linear and so it is very hard to 

find solutions. One of the first solutions presented was by Schwarzschild in 1916. 

Consider the metric in spherical coordinates (r, 0, (f>)

ds2 =  —(1 — — — 2 _ — L _ d r 2 _|_ r 2 ^ 2  _|_ r 2 (2.19)

Here m is the mass of the black hole. This can be verified by going to the Newto­

nian approximation and then applying Newton’s law of gravitation. This equation 

satisfies Einstein’s equations for empty space with no cosmological constant.

We can see that as r —>■ oo we approach the metric of flat spacetime. We can 

also see that there is a singularity at r =  =  2Gm as the denominator of the

second term on the right hand side goes to zero. Initially this was thought to be 

the minimum radius of a body of mass m but later it was understood that this is 

just a coordinate singularity, which can be better understood by doing a coordinate 

transformation.

2.2.3 Kruskal coordinates

Kruskal coordinates are defined by replacing t and r by a new time coordinate u 

and a new spacial coordinate v.
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For the ’interior’ region 0 < r < ro

“  = l ^ - 1) e' /2r°sinh( ^ ) (22°)

V =  ( —------ 1^ er/2ro cog^ (  J _
Vro J \2r0

and for the ’exterior’ region r > tq

r  \  1/2 / f
\ _r / 2 rn _ • I

U = ^ ~ 7 o )  er/2’’° sinh( 2 ^ l  (2'22)

=  ( l  -  — eT,2T0 cosh ( ™
V ro / \2r0

In these new coordinates the Schwarzschild metric takes the form

(2.2i;

(2.23)

ds2 =  — e r/r°(—du2 +  oh;2) +  r2dCl2 (2.24)
r

where fi2 =  d/?2 +  sin20d(p2

For simplicity of analysis we shall consider only the radial motion so we can set 

dfi =  0 for our analysis. After doing these coordinate transformations we now talk 

about some of the properties of the Schwarzschild spacetime (see figure 2.1).

• The solution depends on r, but r should be regarded as a function of u and v
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Figure 2.1: Kruskal diagram for Sehwarzsehild metric. Light travels at 45°. Once a 
particle passes the horizon, it reaches the singularity. Image taken from [8].
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obtained from equations (2.19) and (2.20) or equations (2.21) and (2.22)

• There is no singularity at r =  ro but the singularity at r =  0 still exists. This 

tells us that there is a real singularity at r =  0.

• We can discuss the path that light travels by setting ds =  0, we find that light 

travels at paths where du =  ±dv, this gives u s m =  ±v  +  c. So we can say that 

light travels at 45° lines in this diagram.

• Surface of constant r is given by hyperbola as shown in equation (2.25).

• A path taken by the particle is shown by a dotted line in the figure. One can 

easily see that once a particle crosses the horizon, it will hit the singularity 

unless it travels faster than the speed of light.

For a better discussion Kruskal coordinates one can refer to [?]). We will also discuss 

more about Kruskal coordinates when we discuss other spacetime.

A lot more can be said about general relativity and black holes. For more details 

one can refer to textbooks of general relativity like see [3] and [15]). But we are



13

going to end the discussion here and talk about an interesting phenomena of black 

hole thermodynamics in the next chapter.
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Chapter 3 

Black Hole Thermodynamics

In this chapter we will discuss that black holes that we have studied in the previ­

ous chapter behave like thermodynamic systems. These results were published by 

Hawking and Beckenstien in the 70s.

3.1 Thermodynamics and Statistical Mechanics

We will use canonical and microcanonical ensemble for the study of statistical me­

chanics and derive the laws of thermodynamics using them. In microcanonical 

ensemble we
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3.2 An Analogy

In chapter 2 we discussed properties of a Schwarzschild black hole. The horizon of 

the black hole is r0 =  2GM. So the area is given by

A =  47ttq =  167tG2M 2 (3.1)

Classically nothing comes out of a black hole, this suggests that the area never 

decreases. It was later proved that the area of the black hole always increases [?]. 

The second law of thermodynamics says that entropy always increases, so using the 

analogy we can naively say that the area of a black hole is related to the entropy 

A black hole has only a few independent parameters like mass, charge and an­

gular momentum. These results are known as ’no hair’ theorems (see [2]). So once 

a black hole is formed, it’s properties are independent of anything that formed it. 

To describe a thermodynamic system it is not necessary to know everything about 

all molecules but only certain parameters like pressure, temperature, etc. Since a 

black hole is described only by a few parameters we can say that it must behave like 

thermodynamic systems.

In the study of statistical mechanics we describe the system by microstates, but 

in without knowing a quantum theory for gravity it is not clear that what these 

micro-states in black holes are. Another striking feature of this analogy is
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• We have postulated that the entropy of a black hole is proportional to its area.

• In statistical mechanics the entropy of a system is proportional to its volume.

This leads us to postulate that a black hole in d dimensions must describe a quantum 

system in one lower dimension. This observation is useful and has been realized in 

the AdS/ CFT correspondence. AdS/CFT correspondence states that a quantum 

field theory in d dimensions is ’dual’ to a theory of gravity in d +  1 dimensions. We 

will discuss more about AdS/CFT correspondence in the next chapter.

black holes have a temperature and hence must radiate energy. The corresponding 

temperature is called Hawking Temperature. Hawking computed this by quantizing 

matter fields in black hole background, but we will use a simple way to derive this 

using smoothness of Euclidean spacetime.

3.3.1 Path Integral in Euclidean Spacetime

Although we do not have a quantum theory for gravity we can attempt to create 

a path integral definition of quantum gravity. One can define the following path 

integral

3.3 Hawking Radiation

In the 70’s Steven Hawking and Jacob Bekenstein proved results that stated that

(3.2)
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Here Sl is the gravitational action as a function of the metric g. One can do a 

’Wick rotation’ of the time axis by 90° but substituting t — — it . So the path 

integral becomes

Z=.Jv\g,<l>]e-s*b'* 1 (3.3)

Here the Se is the Euclidean action Se =  —iSl and is real for real fields.

The probability amplitude to go from a configuration (c/i, to the configu­

ration (g2) 4>2, h) is given by

{{92,<i>2)M{9iAi)M) =  J  V[qr,0 ]e^ [9’01. (3.4)

In the Schrodinger picture we can express the same quantity as

( (<?2 > </>2) I e *Ht2 eiHtl ( <7i i ^ 1 )  > =  ((92j2)\eiH{t2-a)(gu<fri)) (3.5)

We now assume that (<7i,0i) =  (<72></>2)> and write t2 — h  =  —ip ( here /3 is the 

inverse temperature in units where the Boltzman constant (kb) is one) and sum over 

the complete set of eigenstates En) of the Hamiltonian we get

z  = j 2 e~f3En (3-6)
n

Equation (3.6) represents the same system as in equation (3.3) where the fields

(g,4>) are periodic in r and with the definition t2 — t\ =  —i/3, the period of r is (3.
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Imposing periodicity of r let’s us compute the temperature.

3.4 Temperature of Schwarzschild Black Hole

Now that we have used an analogy to convert the path integral of a field theory to 

a partition function of a thermodynamic system, we can calculate the temperature 

of a black hole. Consider Schwarzschild metric from equation (2.19)

ds2 = - Vdt2 +  V ^dr2 +  r2d02 +  r2 sin 6dtf (3.7)

where

as discussed earlier we continue the solution to Euclidean signature by setting t = 

—ir, with the period of r being (3. Thus we have,

ds2 =  Vdr2 +  V_1dr2 + r2d62 +  r2 sin2 Odcj)2 (3.9)

We have V — 0 for r =  2GM, thus we can expand V in a Taylor series about 

r =  r0 =  2GM, So up to 0 (r  — r0)

V  =  V\T=ro +  V’/|r=ro(r — r0) 

=  V'\r=ro(r -  r0)
(3.10)
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Thus we have

ds2 =  tt ( Vl2(r — ro)dr2 — —— ) +  r2d02 +  r2 sin2 Odcf)2 (3.11)
V' \ r — r0

Now let r — ro =  e2, so rfr =  2ec?e. Using these substitutions equation (3.11) becomes

ds2 =  (ie2V,2dr2 + 4de2) +  r2d#2 + r 2 sin2 6d(f>2

4 /  / T/7 \ 2 \ (3-12)
=  — I e2 ( j +  de2 I +  r2d#2 +  r2 sin2 Od<p2

Now, we need to ensure that there is no conical singularity at e —» 0. This can be 

done by imposing that the ratio of circumference (going around in r) to the radius

(going around in e) at e —> 0 is 27r. This fixes the periodicity of r.

V v'— r ~  — r -f- 27r
2 2 4tt <313>

t ~ t +  -

Now, the period of r is /?. Thus we must have

—  I = Bt  r,\ r= ro  H

V x (3-14)

T =  8t7g m
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If we restore factors of h, c and kb the temperature of a black hole is

T 8itGMkb 3̂'15^

If we calculate the temperature of a solar mass black hole in SI units we get

T© =  61.78 x 10~9K  (3.16)

So we can see that black holes are incredibly cold and so the radiation emitted by 

them is very low.

3.4.1 Saddle-Point Approximation of the Partition Function

Now that we have calculated the temperature we can use an approximation to 

calculate other thermodynamic quantities like the average energy and the entropy 

of the system.

We know that it is hard to compute the full path integral for this theory but we

can say go in the semi-classical regime and say that the dominant contribution to

the path comes from the extremum of the action (saddle point approximation), so 

under this approximation

Z ^ e ~ SE = e -pw (3.17)

where Sf is the classical solution to the action. And W  is defined to be the effective
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thermodynamic potential.

W — E — TS (3.18)

where T is the temperature and S is the entropy. With the help of this approxima­

tion we can calculate useful information for this system.

The average energy can be defined as

(E) -  1 V  E c~0En ~ ld Z  -  91og z  _ d$E ,0 1Qv{ E ) - - ^ E ne -  z d p - -  df3 -  dfi
n

The probability pn for being in the nth state is given by

Pn =  \e.~PEn (3.20)

Using these results we can calculate a formula for the entropy

S =  - J 2 P nlogPn (3.21)
n

from equations (3.8), (3.9) and (3.10) we can say
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nn

= - i  J V ^ H 9 £ 7 n-lo. gZ) (3.22)
n

r) S'
=  / 3 - ^  +  logZ = /? (£ ) +  logZ

These equations can now be used to calculate useful thermodynamic properties of 

black holes.

3.5 Some comments

• We have calculated the temperature of black holes but not other thermody­

namic quantities like entropy, we need to know the explicit form of the action 

and the boundary terms of the action. Calculations of thermodynamic quan­

tities for a special type of black hole the BTZ black hole are done in Appendix 

A. We cam calculate the entropy of the black hole using this approach and 

compare it with thel Beckinstein-Hawking formula:

S = A/{AGn ) (3.23)

• We have described a black hole as thermodynamic systems. In statistical 

mechanics thermodynamic systems have certain ’microstates’ . But without a
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quantum theory for gravity, we cannot have a description of these ’microstates’ 

in a black hole.

• Black holes radiate energy through the Hawking radiation, but the information 

of the ’things’ that the black holes is made of is lost. No matter what the black 

hole is made of, the same radiation comes out. This is the famous black hole 

information paradox.
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Chapter 4 

AdS/CFT

AdS/CFT correspondence was born out of superstring theory. It claims that cer­

tain quantum field theories are equivalent to certain string theories in one higher 

dimension. String theories are theories of gravity, so this correspondence has helped 

link theories without gravity to theories with gravity. We are not going to discuss 

string theory here, (for more references see (... [9] and [16])) as knowledge of string 

theory is not essential in the study of most features of AdS/CFT. AdS/CFT claims 

duality between two theories:

Strongly-coupled 4-dimensional gauge theory =  Gravitational theory in 5-dimcnsional 

AdS spacetime.

A gauge theory describes all the forces we see in nature except gravity. For 

example Maxwell theory of electromagnetism is a U(l) gauge theory. When a gauge 

theory is strongly coupled it is often hard to analyze it as we have to consider loop 

corrections to higher orders. AdS/CFT claims that we can understand strongly



25

coupled gauge theories using AdS spacetime.

The relation that we have mentioned above corresponds to the case with zero 

temperature. At finite temperature, we must replace the AdS spacctime with an 

AdS black hole. A strongly coupled gauge theory at finite temperature is dual to 

Gravitational theory in AdS black hole. Thus the study of black holes was necessary 

in the study of AdS/CFT correspondence.

Susskind in[13] suggested that a theory of gravity in d dimensions can be de­

scribed by a theory with no gravity in d — 1 dimensions, this was called the holo­

graphic principle. AdS/CFT is a realization of this idea. The correspondence is still 

a conjecture and has not yet been proven, but there have been more than 10000 

papers on it and it seems to be consistent with all calculations. We are not going 

to discuss the origin of AdS/CFT here, but assume that the correspondence exists 

and do other discuss some features that come out of it. I am grateful to Makoto 

Natsuume as most of the discussion in this chapter is from [8].

4.1 Curved Spaces

Anti De-Sitter spacetime is a hyperbolic spacetime with constant negative curvature. 

But before we study hyperbolic spaces we will first study curved Euclidean spaces. 

Consider the metric in three dimensions.

ds2 =  dx2 +  dy2 +  dz2 (4.1)



We can now constrain ourselves to a sphere of radius I in this space by imposing:

x2 +  y2 4- z2 — K 2 (4.2)

We can now switch to spherical coordinates by

x = I sin 9 cos <p

y =  I sin 9 sin tp (4.3)

z =  I cos 9

The metric now looks like

ds2 =  l2(d92 +  sin2 9d(p2) (4.4)

This metric has constant positive Ricci Scalar (positive curvature) given by

R =  |  (4.5)

Anti De-Sitter space is a hyperbolic space. It is difficult to visualize hyperbolic 

space as it cannot be embedded inside Euclidean space, but it can be embedded in 

Minkowski space. Consider the metric

ds2 =  — dx2 +  dy2 +  dz2 (4.6)
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with the constraint

—x2 + y2 + z2 =  —I2 (4.7)

To solve for these constraints we can make the following coordinate transformations

x =  I sinh p cos </?

y =  I sinh p sin tp (4-8)

z =  I cosh p

the result is

ds2 =  I2 (dp2 +  sinh2 pdip2) (4.9)

The above metric is a metric for hyperbolic space. We can see that it does not nat­

urally have a time-like direction. This is hyperbolic space not hyperbolic spacetime.

This space has a negative Ricci scalar given by

R =  - 1  (4.10)

4.2 The AdS Spacetime

Now that we have discussed spaces, lets talk about spacetime. The AdS2 spacetime 

can be embedded in three dimensional Minkowski spacetime with two time-like



ds2 =  — dz2 — dy2 -f dx2

and the constraint
2 2 , 2  >2 —2 — y + x = —I

This can be solved by doing the following coordinate transformations

2 =  I cosh p cos t 

y =  /coshpsini (4.13)

x =  I sinh p

The metric becomes,

ds2 =  l2(— cosh2 pdi2 +  dp2) (4.14)

These coordinates are called global coordinates. We have embedded AdS into flat

spacetime with two timelike dimensions 2 and y, the Ads has only one timelike

dimension.

The time coordinate t has periodicity 27r (from equation 4.14). Also note that 

the AdS spacetime solves Einstein’s field equations with constant negative curvature 

R =  —2/12.

dimensions. Consider

(4.11)

(4.12)
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4.2.1 Various coordinate systems

In the last section we have discussed global AdS spacetime using coordinates (p, t). 

We can also use different coordinates system when required.

Static Coordinates

This system of coordinates is defined by defining a coordinate f  =  sinhp. The 

metric becomes

... include figure 

Poincare coordinates

This system of coordinates is the most often used system. It is defined by making 

coordinate transformations in equations (4.11) and (4.12) as

(4.15)

y =  Irt (4.16)

here r > 0. The metric becomes

(4.17)
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This system is also useful to compare with the AdS black hole. By substituting 

z =  l/r the metric can also be written as

ds2 =  dt2 +  dz2) (4.18)

This can also be extended to higher dimensions

ds2 =  - j ( —dt2 H- dz2 +  (dx1)2) (4.19)

4.3 Conformal Field Theory

We have discussed the duality between conformal field theory and anti-desitter space, 

so let’s discuss conformal field theory in this section.

Scale Invariant Gauge Theory (Classical)

For field theories that are scale invariant, we expect that physics does not change 

under the transformation

x** -> ax'1 (4.20)

This is an important property of four-dimensional gauge theories, for example 

Maxwell Theory.
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Scale Invariant Gauge Theory (Quantum Theory)

Gauge theories discussed previously are gauge invariant classically in four dimen­

sions. However, they are not scale invariant quantum mechanically. Renormalization 

introduces a renormalization scale which breaks the scale invariance of these gauge 

theories.

However, there is a special class of gauge theories that are scale invariant even 

quantum mechanically. We will only focus on such theories. In particular, the 

Af =  4 super-Yang-Mills theory has these symmetries.

Consequences of Scale Invariance

In this section we will see how scale and Poincare invariance in four-dimensions 

constrains five-dimensional spacetime. Consider a five dimensional spacetime.

ds\ =  Cl(uj)2( —dt2 +  (dxl)2) +  cLj2 (4 -21)

This metric has Poincare invariance in four dimensions. We to now determine 

the factor Q(u) using scale invariance. The metric should be invariant under the 

transformation x  ̂ —> ax11, this implies Q(u;) —> a- 1f2(w). This tells us that u must 

transform non trivially. The line element along lu is dco2, so for the theory to be
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invariant only translations in u are allowed. We can write the translation as

lj —y cj I log a (4.22)

where I is some length scale. This transformation and scale invariance can now 

uniquely determine Q(cu). Under these transformations the metric becomes

ds2 =  e~2uj/l(—dt2 +  (dx1)2) +  duo2 (4.23)

we can now define r =  e~2uj/\ so

d sl=  (~dt2 +  {dxi)2) + ( J )  dr2 (4.24)

Which gives us precisely the AdS metric. The length scale I is the AdS radius.

4.4 A dS /C F T

Now, the AdS/CFT correspondence says that

ZcFT =  % AdS*, (4.25)

The left hand side is the partition function of a gauge theory with scale invariance

and the right hand side is the partition function of string theory in AdS5. This
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relation is called GKP-Witten relation. We will make use of this duality in the next 

chapter.
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Chapter 5

Black Holes and Chaos

5.1 Entanglement and Gravity

Entanglement is a central property of any quantum system. It plays an important 

role in describing many body-systems, quantum field theories,etc. We can write the 

state of any pure system as

|$) =  \4>a) ® \4>b ) (5.1)

where A and B are subsystems of the system. A system is defined to be entangled 

if it cannot be defined as product states in equation (5.1). It turns out that all 

quantum systems cannot be described by equation (5.1).

Given some basis \4>n) for A and \4>m) for B we can write down a general state
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for the system.

1$) =  Y 2 cm,n \4>n) ® l^m) (5.2)
77l ,n

where c„im are complex coefficients defined by the normalization condition

D w i 2 =  i (5-3)
n,m

We can now define a density matrix operator for subsystem A with orthogonal 

states \(f>lA) and associated probability pt.

PA =  ^Pi\<t>\) (5-4)
n

The density matrix is a Hermitian matrix with unit trace and non-negative eigen­

values Pi.

We can compute the expectation value of an observable using the density matrix.

(Oa) =  tr(pOA) (5.5)

Starting from a state |<5) it is possible to determine the density matrix of a 

subsystem and thus the associated ensemble (for an explicit calculation see [14]). 

We can now define a quantity a by

a =  -tr(p logp) (5.6)
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We argue that a can be regarded as a measure of disorder in a system. A pure 

ensemble has maximum order as we can verify that o =  0 for pure ensemble, and in 

a random ensemble a =  log A  where N is the number of states (....see page 189 of 

[11])-

In a thermodynamic system the entropy is regarded as the degree of disorder. 

So it turns out that the quantity a is related to the entropy of the system. So we 

can define the entropy as

S =  a
(5.7)

S =  -tr(p logp)

This is known as Von Neumann entropy named after John Von Neumann. It is also 

known as entanglement entropy.

We have seen earlier that starting with a state |<f>) it is possible to determine 

the density matrix of the subsystem. Let’s now consider the reverse question: given 

Pa for a quantum system is it possible to find a pure state of some larger system 

such that pa is the reduced density matrix of the subsystem A? This process is 

called purification. There are infinite number of such purifications in general. For 

an ensemble p{\4>\) ,Pi) in Hilbert space Ha , we can describe a general purification 

as

i$> =  ^  Wa) ® Wb ) (5-8)
i

where \(f>%B) are orthogonal states in Hilbert space He - This representation is called
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Schmidt decomposition and it is possible to represent any state of a combined system 

in this way.

One example is the idea that a thermal state (canonical ensemble) can be consid­

ered a system weakly coupled to a larger system called heat bath. The full system 

including the heat bath can be considered as a pure state and the entropy can of 

the ensemble can be understood as entanglement with the bath.

Sometimes it is useful to consider a simplified purification by choosing the puri­

fying system as a copy (here the original system is L and we introduce an identical 

system R) of the original system and then considering the state:

this state is know as the Thermofield Double state.

We can now find the density matrix for the L system by taking a partial trace 

over R.

1 (5.9)

(5.10)

5.2 Two sided Black holes

These ideas of entanglement have some useful applications in the AdS/ CFT cor­

respondence. In the previous chapter we had mentioned that a black hole in AdS
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Figure 5.1: a) Penrose diagram for the spacetime of the maximally extended two 
sided AdS-Schwarzschild black hole, regions I and II are exterior regions and III and 
IV are exterior regions b) Spacial geometry of t =  0 slice (shown in red), showing 
the horizon (dashed). Image from [14]

is described by a thermal state of the CFT on a sphere, and the area of the black 

hole can be identified with the entropy of the CFT. The entropy of entanglement 

S =  — t r ( p i \ o g is the Beckenstein-Hawking entropy is given by the area of the 

event horizon, S =  A/AG.

Maldacena in [6] argued that the the spacetime associated with the thermofied 

double state (equation 5.10) of a two CFT system is maximally extended AdS- 

Schwarzschild black hole (see the figure 5.1) . The geometry has two asymptotic 

regions, each with its own boundary and black hole exterior.

The two individual states states in the thermofield double are product of states



Figure 5.2: Gravity interpretations for the thermofield double state in a quantum 
system defined by two non interacting CFTs.[14]

in a non-interacting CFT. For each state of the CFT the corresponding geometry has 

nothing to do with the other, and so must correspond two complete separate AdS 

spacetimes. On the other hand the state described in equation (5.10) corresponds 

to an extended black hole where the two sides are connected by classical spacetime 

in the form of a wormhole. We can make a remarkable conclusion from this: By 

entangling the degrees of freedom in two separate gravity theories in a particular 

way, we can glue the corresponding geometries. In the thermofield double state, the 

black hole entropy is the entropy of a single CFT or the entanglement entropy of 

the two subsystems with each other.

5.3 Ryu-Takayanagi formula

The Beckenstein-Hawking formula gives the total entropy of a CFT in a thermal 

state, identifying it by the area of the horizon in the dual spacetime. Ryu and
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Takayanagi proposed a formula [10] for the entropy of any spacial subsystem of a 

CFT associated with some classical spacetime.

Consider a CFT with a holographic dual defined on some spacetime geometry 

B. Now let the CFT be in the state |$) and the associated dual geometry G$. Now 

we can consider a subsystem A in the CFT by choosing a spacial slice Eg of B and 

choosing A c  Eg of this slice. Since the boundary geometry of is the same 

as B, we can define regions on dM$ corresponding to Eg, A and A C Eg.

Let Sa be the entanglement entropy of the subsystem A. The Ryu-Takayanagi 

formula states that this entropy is equal to the area of a certain codimension-2 

surface A in that is homologous to A

Sa =  ^ A rea (A )  (5. IF

The surface is defined in figure (5.3) and satisfies the following conditions.

• The surface A has the same boundary as the A.

• The surface A is homologous to the surface A. Surfaces A and A can fail to

be homologous if the bulk geometry is a black hole.

• The surface A extremizes the area, so if there are multiple surfaces that are

possible then A is the one with the least area.
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\W> I V / V
A \A \

\
CfTc^B a r t * ' #

Figure 5.3: In this diagram the time direction is suppressed. The left side shows 
the spacial slice Eg on which the CFT lives. The right side shows the geometry 
dual to the state |<E>). Image taken from [14]

Example

Consider the entanglement entropy of a ball-shaped region B for a CFT in the 

vacuum state on Rd~1’1. The dual geometry to this is the Poincare AdS

Where I is the AdS radius. We need to find the extremal area d — 1 dimensional 

surface whose geometry on the boundary is same as the ball B, which we choose 

to be at (xi)2 =  R2 and t =  0. The AdS geometry is static, so the bulk extremal 

surface should lie in the t =  0 slice.

ds2 =  t-?(—dt2 +  (dx1)2 +  dz2)
z z

(5.12)
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We can parametrize the surface as X^(cr). In d— 1 dimensions the area functional 

is given by

Area =  J  dd~la^/det gab (5.13)

Where gab is the induced metric on the surface given by

_ _  d x ^ d x "  .

9ab~ ^  do* dab ( )

Here G is the metric of spacetime. We can now take a to be the coordinates x\ 

with the surface parametrized by z(xl) and t(xl) =  0. We have

I2 (  dz dz dxk dxk
^  z2 I dx{ dxi dxi dx3 j

. p / i i i i  (515)
z 1 \ d x 'd x i  ' IJ

For simplicity lets take d =  2 so xl = x and g^ is just a lx l matrix, and

det^ =  ^ (1  -h f  ) (5.16)dx j

So the area functional becomes

d z '  2
Area =  J d x l- ]j l + ^ g j  (5.17)

We can now use Euler-Lagrange equations to extremize the area. Let’s call =  i.
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Thus we have

~ ( ~ l- V T T ^ )  = - ^ - l-V T T J 2 (5.18)dx \OZ Z / OZ Z

Solving this equation and setting z(—R) =  0 and z(R) =  0 we get z2 +  x2 =  R2. So 

the extremal area is

Area =  J  dx-)J 1 +  ^  (5.19)

Note that this area diverges as z =  0 is a singular point, so we regularize the integral 

by introducing a cutoff e and integrate over all regions where z > e. Thus,

HR2-*-2 i I 2̂
Area =  / dx—= = \  1 +

So the entropy is

VR2-e2 VR2 — X2 \ R2 — Z2 (5.20)
2R = 21 log —  
e

S = ^ l o g i  (5.21)

Where L =  2R is the length of the interval. Now, the entanglement entropy of 

a CFT in the vacuum state with central charge c in the interval L in terms of UV 

cutoff is given by

5 =   ̂l o g -  (5.22)
3 6

This precisely agrees with our calculation for a CFT with central charge c = 3Z/2G.
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5.4 Mutual Information

The Ryu-Takayanagi formula has a problem. The area A is divergent as there is 

infinite proper distance on the boundary of AdS. To make sense of this formula we 

have various options, firstly we can work with a UV cutoff at some high scalc 1/e. 

In the geometry part we can keep only the z > e part as done above. We can work 

with this usual approach of quantum field theory and work with quantities that 

remain finite when the cutoff is removed. We can define a quantity called mutual 

information I (A : B ) by

I (A : B) =  S(A) +  S(B) +  S(A U B) (5.23)

We can use this to obtain a regulated version of the entropy by choosing B to be all 

the points within a distance < e from A.

Mutual information is a measure of entanglement and correlations between (wo 

subsystems A and B. Mutual information provides an upper bound for all correla­

tions between two subsystems; if Oa and Ob are two bounded operators acting on 

'hia and 'Hb , it can be shown that[14]

( (0 A0 B)) -  (0 A) (Ob) ) ^ h

2] (0A) |21 (Os) P - I { A B > (5 24)

Let’s calculate the mutual information for the CFT discussed before. Consider 

the mutual information of a CFT in the vacuum state between intervals A and B



Figure 5.4: Extremal surfaces for calculating the mutual information between two 
disjoint regions in a two-dimensional CFT.

with length L separated by a distance R (see figure). The mutual information is 

I(A  : B) =  S(A) +  S(B) -  S(A U B ).

For this example there are two extremal surfaces of A U B.

First one is the union of surfaces A and B. The area of the extremal surfaces is

A i=  4/log ^  (5.25)

So the mutual information is zero.

The second one is the union of the red surfaces. In this case the area of the 

extremal surfaces is

A2 =  21
2 L R Rlog------------ 1- log —e e

(5.26)
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So the mutual information is

,{A  :B )  = 2'g ‘0g ~ I ? ~  <5 27)

The surface we choose from these two should be the one with least area. So we 

choose A\ for R > (\/2 — 1 )L and we choose A2 for R < (y/2 — 1). Thus we can now 

state that the mutual information is always positive and it’s extremal value is zero.

5.5 Chaos

Thermal systems also have another basic property. Starting from a state |3>) the 

system evolves into a much disordered state than the original state. These final 

states depend very sensitively on the initial states, seemingly similar initial states 

could evolve into final states that are quite different from the initial states. Such 

chaotic behavior has come to be referred to as ’’ scrambling” , and it has been con­

jectured that black holes are the fastest scramblers in nature. The time it takes for 

fast scramblers to render the density matrix for a subsystem A to exactly thermal 

is conjectured to be t ~  ft log S, where S is the entropy of the system. We will 

now discuss the interplay of entanglement and scrambling using holographic tools 

as discussed in [12].

Here we discuss the eternal black hole setup as above with regions A in the L 

system and region B in the R system. We will see what happens when we introduce
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a small initial perturbation. We choose regions A and B in L and R CFTs at time 

t =  0. Here A and B may be highly entangled. We now consider the effect of 

introducing a small amount of energy E into the L system at time t =  —tw, by 

throwing a few quanta in towards the horizon. One expects that the CFTs dual 

to the geometry will have sensitive dependence on initial conditions and a small 

perturbation should show chaotic behavior. Thus at t =  0 we expect to not be in 

the thermofield double state and should have less entanglement between A and B.

Naively one might think that introduction of a few quanta should not have an 

effect on the geometry, however the time t =  0 defines a frame in the bulk and 

relative to this frame, the energy introduced at time tw in the past will be blue- 

shifted. So the addition of quanta at time t =  —tw will affect entanglement. The 

related geometry can be described by shock wave [4],

5.6 Black holes and butterfly effect

In this section we will discuss the geometrical constructions used to calculate the 

mutual information holographically, assuming Einstein gravity as done in [12]. We 

will see a bulk geometry that illustrates the sensitivity of specific entanglements in 

the thermofield double state to mild perturbations in the past. We will work with 

Einstein gravity in 2+1 bulk dimensions. We will use RT surfaces and correlation 

function probes to follow the loss of correlation between L and R sides.
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5.6.1 Unperturbed BTZ black hole

Let’s consider geometrical dual of the unperturbed thermofield double state (equa­

tion 5.10). In 2+1 bulk dimensions the thermofield double state corresponds to the 

BTZ metric. We can think of the CFTs to live on the boundaries of the respective

regions. The BTZ metric is given by

ds2 =  —— dt2 +  - --rdr2 +  r2d(j? (5.28)
// rA — KA

where I is the AdS radius, and R is the horizon radius given by R2 =  8GMl2. 

The temperature is given by /3 =  2nl2/R. As done earlier, it is useful to switch to 

Kruskal coordinates. In these coordinates the metric is

2 —4 l2dudv +  ,ft2(l — uv^dcj)2 .
ds = -------------——------   (5.29)

(1 +  uvy

The boundaries are at uv =  — 1 and the singularities are at uv =  1.

In our discussion it would be required to compute the geodesic distances between 

points in the BTZ geometry. Since BTZ is a quotient of AdS, we can use the formula 

for geodesic distance in pure AdS2+i given by [?]

cosh y =  T\T[ +  T2T' -  X xX[ -  X 2X'2 (5.30)
t
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Figure 5.5: Kruskal diagram and Penrose diagram for unperturbed BTZ 

we have used the embedding coordinates

m  U +  V 1 r-Z-------- — r  . Rt
Tx =  ---------=  — vV2 -  R2 sinh —

1 +  uv R 12
1 - u v  R4> r R(f>

To =  cosh —— =  — cosh ——
2 1 +  uv I R I

v — u 
1 + uv 
1 — uv

=  ■—V r2 — i?2 cosh

R<p

(5.31)

smh^ = " sinh , 
1 + uv I R I

This also gives a relation to go from u, v to r, t.

5.6.2 BTZ shock wave

In this section we will mildly perturb the BTZ metric by adding a few particles at 

the left boundary and let them fall into the black hole. If we release a perturbation 

with energy E in the past at time — tw then it will cross the t =  0 time slice with
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energy

Ep ~  ^ eRtw/l2 (5.32)

This geometry is constructed by gluing a BTZ solution of mass M  to a solution of 

mass M  +  E across the null surface uw =  e~R i w . Here E is the asymptotic energy 

of the perturbation, which is taken to be small compared to M .

We take coordinates u, v to the right (past) of the shell and u, v to the left 

(future), so the metric is always in the form of equation (5.25). Because we have an 

increase in mass in the left we also have an increase in the radius to the left. If R

is the radius to the right then R =  \ M*E R-

For small E/M , the solution is a simple shift,

v =  v +  a , a =  ^ - e Rtw/l2 (5.33)4 M

This is exact if we take E/M —> 0 and tw —> oo with a fixed. In this limit, the 

metric can be rewritten as

l9 —4l2dudv +  R2[l — u(v-{-a0(u))]2d(f)2 . ,
dS =    [ ! + „ ( „ +  <■»(,,))]*  (5M)

The geometry that corresponds the this metric is shown the figure  It is sometimes

useful for computations to use discontinuous coordinates U =  u, V =  v +  a6(u). In
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these coordinates the metric takes the form

, 2 -4l2dUdV + Al25(U)dU2R 2{l -  U V f d t f
da =    ( T T u v f   (J'35)

Equation (5.34) satisfies Einstein equations for the stress tensor

Tuu =  4VH5i-u) ( 5 ' 3 6 )

5.6.3 Geodesic distance

Consider a geodesic connecting a point tL on the left boundary with a point tn on 

the right boundary, where tL and tr are killing times located at the same <j). A 

geodesic connecting these points will pass through u =  0 at some value of v. We 

can now use formula for geodesic distance (equation 5.29) to compute c?i from the 

left boundary to this point and d2 from the right boundary to this point. We get

cosh =  — +  — Vr2 — B?e~RtL̂ L (v +  a)
I n n .  (5.37)

cosh -j- =  — — — \/r2 — R2eRtR/1 v

We can extremize d,x + d2 over v to find the total geodesic distance d. For large 

r we get

j  =  2 log |  +  2 log ( c o s h f ( t «  -  tL) +  | e- r(^+t«)/aa)  (5.38)

Now a =  0 represents the unperturbed BTZ, so the contribution of a represents an
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increase in distance due to the shock wave.

If t L + tR is sufficiently large then the shockwave does not affect the geodesic 

distance.

We can also calculate the distance between equal time points on the same bound­

ary with an angular separation 0, this distance is unaffected by the shockwave and 

is given by

y = 21og^  +  21ogsin h ^  (5.39)

5.6.4 Mutual information

We have constructed a perturbed thermofield double state. We can now use the 

above calculations to understand the measure of correlations between regions A C L 

and B C R in the two CFT’s. One of these is the mutual information I(A : B) =  

Sa +  Ab — Saub- We can use the Ryu-Takayanagi formula (Equation 5.11) to 

compute the entropy Sn of the density matrix associated to the region Q. In 2+1 

dimensional bulk, the extremal surfaces are geodesics, and the area is the length of 

the geodesics.

We will consider a spacial region at t =  0 consisting of two disconnected com­

ponents A and B. For simplicity, we will take 0 < 7r, and centre then at the same 

angular location.

Let’s first consider Sa - Here we have two choices of extremal surfaces. First 

is the geodesic that connects the endpoints on interval A, this is calculated using
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Equation (5.38). The second surface is a geodesic that connects one endpoint to the

image of the other by the BTZ identification, plus a contribution from the horizon 

of the black hole as required by the homology condition. When <f> < n, the first 

surface always has smaller area, so we can use equation (5.38) to get

We can now calculate Saub- We have taken (f) < 7T, so we again have two choices 

of extremal surfaces. The first one is the sum of the two geodesics used to compute 

Sa and SB. This gives S\uB = SA +  SB. The second choice we have is the geodesic

The Ryu Takalanagi formula tells us that we should use the lowest of these two. 

For regions with sinh < 1 we have S \ uB < S\uB, giving us I(A  : B) =  0. For 

larger regions with sufficiently small a, S\uB > S\uB, and we have positive mutual 

information. Substituting for a using equation (5.32) and rewriting M  and Ii in 

terms of Bekensiein-Hawking entropy S and inverse temperature 6 we get

(5.40)

connecting the endpoints of A to the endpoints of B. We can use Equation (5.37) 

for this purpose. Thus we obtain

(5.41)

(5 .42)
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We can see that the mutual information decreases as tw increases. For high temper­

ature, I reaches zero when tw is

‘ •w ) = f + ^ iogH  (5/i3)

In large N gauge theory, string coupling gs is small, so S ~  N 2, and E assumes 

its smallest reasonable value E ~  T =  1//3 then

U = -^-\ogS (5.44)
Z7T

We can see that I evolves with a sharp transition in which the A U B minimal

surfaces exchanges dominance and eventually, I  goes to zero in a continuous but

non-differentiable way. Here is the scrambling time.
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Thermodynamic Quantities of the BTZ 

black hole

Consider the action for gravity in (2+1) dimensions

5  = I fo h a  /  d' X^ R  ~ 2A) (5 45)

When the cosmological constant is zero, the vacuum solution is necessarily flat space. 

But in 1992 Banados, Teitelboim and Zanelli discovered the BTZ black hole solution

[1] with a negative cosmological constant.

With a negative cosmological constant A =  —l / / 2, the BTZ solution to (2+1) 

dimensional gravity is the metric

ds^Tz =  ~V(p)dt2 +  V(p) 1dp2 +  p2 d̂cj) H--------  —dt̂ j , (5.46)

V( p ) =  ( -8 G 3M +  ^  +  ^ ^ j ,  (5.47)
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where (j) is periodic with period 2n. Notice that V =  0 at two values of p. Thus the 

black hole has two event horizons (boundaries) p± where,

/ ,_________  \ 1/2
P± =  2 ( Gzl{lM ±  \//2M 2 -  J2) J (5.48)

The mass and angular momentum of the black hole is given by

P+ + P2 _  F+ -r
® 3 (5.49)

T _  P+P-
4LG3

Substituting J =  0 and M =  0 gives us the AdS3 black hole in local coordinates.

We can now calculate the temperature and the entropy as discussed earlier in 

Chapter 2.

We can now write down the action for the BTZ black hole

Stotal ~ SBulk +  b̂oundary CT (<J.50)

where the Sboundary is the boundary term also called the Gibbons-Hawking boundary 

term that needs to be added to the Einstein-Hilbert action when the spacetime 

manifold has a boundary and Sct is the counter term that is necessary to get rid 

of divergences.
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now,

s*“‘ = iika I  '/^ { R +i ) ‘t>x

i y ° { R + i ) dp

2 n/3
l& irG Jp+

M  ~ A2)
AGP

(5.51)

In the end of the calculation we must take A to infinity as we are integrating over 

all space.

The Gibbons-Hawking term on the boundary is given by [5]

Sboundary |  QttCJ J  ^ ^  ^

= 2nP K\
8ttG 'p_A

(5.52)

where K  is given by

K  =  n^  (5-53)
dx^

here Vh is the determinant of the metric on the boundary. Thus we have

a /3(—8Gl2M  + p \  + A2)
boundary ~  --------------------A G  I2 V ° -0 4 7
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and

0 , M  -  A2)(p2_ -  A2)
/2

(5.55)

Adding everything we get

/<■ (5.56)

Now formally taking the limit A —» oo we get

Now that we have the total action we can use concepts discussed in chapter 3 to 

calculate thermodynamic quantities.

Let’s define a tangent vector field to the euclidean time circle that shrinks to 

zero at the horizon

Where u is conjugate to angular momentum J. W can find the value of u> by 

requiring the tangent vector to go to zero at the horizon. The tangent vector P is 

given by

di =  dt — uod(j) =  T^dx^ (5.58)

p  =  r „ G r r „ (5.59)
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Where Gtiv is the metric tensor. Setting P  =  0 at p =  p+ we get

u =  — 7— (5.60)
lp+

The temperature can be calculated by requiring the period of the euclidean time 

to be 27r. Doing this we get
T  =  P± z  Pz (5 61)

2irp+

The free energy is defined as

Stotal F
0

12tt2T 2 (5.62)

2G -  2G12oj

The entropy is given by

s =  J J L  =  (5.63)
dT 2G

The area of the horizon is 2irp+, so we can say that the entropy and area are related 

by

S =  ~  (5.64)
4 G
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